

SMART CONTRACT CODE REVIEW
AND

SECURITY ANALYSIS REPORT

Date: 12 September, 2025

 ETHICS SMART CONTRACT AUDIT 2

page 2/14

This report may contain confidential information about IT systems and the intellectual prop-
erty of the Customer, as well as information about potential vulnerabilities and methods of
their exploitation.
The report can be disclosed publicly after prior consent by another Party. Any subsequent
publication of this report shall be without mandatory consent.

Document
Name Smart Contract Code Review and Security Analysis Report for ETHICS (JUS-

TICE)

Approved By Svyatoslav Nadozirny | Solidity SC Auditor

Auditor
company

Coders Valley Ltd.
63-66 Hatton Garden
Fifth Floor, Suite 23
EC1N 8LE - London
London (GB)
United Kingdom

Type ERC‑20 Fungible Token

Platform Ethereum Mainnet

Language Solidity v0.8.28 (OpenZeppelin 5.x patterns, libs compiled with ^0.8.20)

Methodology Referenced document for audit methodology

ChangeLog September 12, 2025 – initial release

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI

 ETHICS SMART CONTRACT AUDIT 3

page 3/14

Table of contents
Introduction .. 3
Scope .. 3
Severity Definitions ... 3
Executive Summary ... 3

Documentation quality .. 3
Code quality .. 4
Security score .. 4
Summary ... 4

Risks ... 4
System Overview ... 4

Privileged roles .. 4
Recommendations ... 4

Checked Items .. 5
Findings .. 8

Critical ... 8
High ... 8
Medium ... 8
Low .. 8

Disclaimers ... 9
Technical Disclaimer ... 9

 ETHICS SMART CONTRACT AUDIT 4

page 4/14

Introduction
The Customer engaged our company to evaluate the ETHICS smart-contract (symbol JUSTICE)
for security, code quality and compliance with ERC-20 best practices. This report summarizes our
findings and provides actionable recommendations.

Scope

General data provided by the Customer

• Token name: ETHICS
• Token symbol: JUSTICE
• Decimals: 18
• Blockchain: Ethereum
• Contract standard: ERC‑20
• Total supply: 100,000,000
• For sale: 50,000,000 (50%)
• Website: https://www.worldethics.info
• Deployment style: Minimal Proxy to implementation UltimateTokenOwnable

The scope of the project includes the following smart contracts from the link:

Contracts: https://etherscan.io/token/0x69dB04251ed748705D50796E9758AB5Dd2b000E9#code

• UltimateTokenOwnable.sol - implementation contract combining OpenZeppelin-style
ERC-20 with extensions (Ownable, Pausable, Capped, TokenURI) and Initializable pattern
for minimal proxies.

• OpenZeppelin-based modules (upgradeable patterns using ERC-7201 storage namespaces):

• Initializable.sol, Ownable.sol, Pausable.sol, ERC20.sol (modified),
ERC20Capped.sol, ERC20TokenMetadata.sol, plus interfaces (IERC20.sol,
IERC20Metadata.sol, draft-IERC6093.sol) and Context.sol.

Deployment model

• Minimal Proxy (CreateMyToken factory): “UltimateTokenOwnable” with initialize
function (initializer guard).

• Compiler: v0.8.28, Optimizer: enabled (200 runs), EVM: paris.

Live Code: Provided (source bundle)

https://www.worldethics.info/
https://etherscan.io/token/0x69dB04251ed748705D50796E9758AB5Dd2b000E9#code

 ETHICS SMART CONTRACT AUDIT 5

page 5/14

Technical Documentation: Whitepaper (ETHICS/JUSTICE, 2025) -
https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?dn=W
HITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx - provided

Tests: Not provided

Environment: Foundry/Forge settings JSON provided (optimizer, remappings, viaIR, EVM Paris)

SHA256 Hash

SHA256 hash of the source code - not computed in scope of this report.

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can lead to the
loss of user funds or contract state manipulation by external or internal actors.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions,
or have a more limited scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium Medium vulnerabilities are usually limited to state manipulations but cannot
lead to asset loss. Major deviations from best practices are also in this category.

Low
Low vulnerabilities are related to outdated and unused code or minor Gas opti-
mization. These issues won't have a significant impact on code execution but
affect code quality.

Executive Summary
The score measurement details can be found in the corresponding section of the scoring methodology.

Documentation quality
The total Documentation Quality Score is 8 out of 10.

• Functional requirements are provided in
https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?
dn=WHITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx
Whitepaper provides vision, tokenomics (50/20/15/10/5), roadmap, and operating principles;
public parameters (name, symbol, decimals, total supply, ICO share) are clear. (Score: 5/5).

• Technical Requirements: Compiler/EVM/optimizer details available; deployment proce-
dures, test plans, and operational runbooks absent. Foundry settings present, however, pre-
cise deployment/initialization parameters (owner, mint target, cap) and addresses for vest-
ing/allocations are not formally documented, no migration/rollback plan. (Score: 3/5).

• NatSpec Adherence: Not used — reduces in-code clarity.

https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?dn=WHITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx
https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?dn=WHITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx
https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI/edit
https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?dn=WHITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx
https://www.worldethics.info/_files/ugd/3d727a_b01fbcfe0a0a4f668ec33ffa80cd8710.docx?dn=WHITEPAPER%204%20ETHICS%20(JUSTICE)%20DEUTSCH.docx

 ETHICS SMART CONTRACT AUDIT 6

page 6/14

Code quality
The total Code Quality Score is 8 out of 10.

• Development Environment:
! Code relies on OpenZeppelin 5.x patterns with ERC-7201 namespaced storage to

mitigate collision risks.
! Correct initializer guard; however, parent __Ownable_init/__Pausable_init

are not invoked (see Low-severity note). (Score: 3/5).

• Solidity Style Guide Compliance: Consistent formatting; clear separation of concerns
(ownership, pausing, capping, metadata). (Score: 5/5).

• Areas to improve: prefer __Ownable_init(_owner) and __Pausable_init() instead of
direct _transferOwnership; add require checks for zero addresses in initialize; add
event for tokenURI change, extend tests and CI.

Security score
The security Score is 9 out of 10.

All previously identified critical and high-severity issues have been remediated. However, several
low-severity issues persist, and there is still no automated test coverage (0 % branch coverage),
which prevents a perfect security rating. (Score: 9/10).

• Critical Issues: None

• High Issues: None

• Medium Issues: 1

• Low Issues: 3

• Notes: Centralized minting under onlyOwner up to the cap, ensure governance/ops controls.

Summary
According to the assessment, the Customer's smart contract has the following score: 8.7.

The system users should acknowledge all the risks summed up in the risks section of the report.

1 2 3 4 5 6 7 8 9 10

 Final score

Breakdown:

• Documentation Quality: 8/10

 ETHICS SMART CONTRACT AUDIT 7

page 7/14

• Code Quality: 8/10
• Security Level: 9/10
• Test Coverage: Not provided (requires unit tests for scoring).

Note: The final score is weighted according to the methodology (Documentation weighted at 1.0,
Code Quality at 2.0, Security at 7.0), and the absence of unit tests impacts the overall score.

Table. The distribution of issues during the audit

Review date Low Medium High Critical
12 September, 2025 3 1 0 0

Risks
No exploitable vulnerabilities were identified in core token mechanics. The implementation closely
follows OpenZeppelin ERC-20 patterns with a supply cap and pause guard applied to the unified
_update path (covers transfer/mint/burn).

Residual risks are operational and governance-related:

• Centralization risk: onlyOwner can pause the token and mint up to the configured cap. If
the deployer retains EOA ownership, compromise of the owner key can impact token opera-
tions.

• Misconfiguration risk: The supply cap (_maxSupply) is provided at initialization. If con-
figured above the communicated total supply (100,000,000), additional issuance up to the
cap becomes possible.

• Operational risk while paused: With _update gated by whenNotPaused, pausing also
blocks mint and burn. Ensure documented procedures for incident response and resumption.

System Overview

Contract: UltimateTokenOwnable (Minimal Proxy instance)
Standard: ERC-20
Extensions: Ownable, Pausable, Capped Supply, Token Metadata.

Key behaviors

• Initialization (initialize)
o Sets name/symbol/decimals via __ERC20_init.
o Initializes supply cap via __ERC20Capped_init(_maxSupply).

 ETHICS SMART CONTRACT AUDIT 8

page 8/14

o Transfers ownership with _transferOwnership(_owner).
o Mints _initialSupply to _mintTarget.
o Sets token metadata URI with _setTokenUri(tokenUri_).

• Transfer/Mint/Burn path
o All state transitions route through _update (OpenZeppelin 5.x).
o Contract overrides _update with whenNotPaused, pausing halts transfers, mints,

and burns.
o ERC20Capped post-mint check reverts if totalSupply() would exceed cap().

• Administrative controls
o pause() / unpause() — only owner.
o mint(address to, uint256 amount) — only owner; subject to cap.
o burn(uint256 value) — self-burn by holder.
o setTokenURI(string tokenUri_) — only owner.

• Events & errors
o Standard Transfer/Approval, Paused/Unpaused, OwnershipTransferred, and OZ

ERC-6093 custom errors (e.g., ERC20InsufficientBalance).

Privileged roles

• Owner (EOA or multisig recommended):
o pause() / unpause() — globally disables/enables all token movements.
o mint(address to, uint256 amount) — mints subject to cap.
o setTokenURI(string) — updates off-chain metadata pointer.
o transferOwnership(address) / renounceOwnership().

No other elevated roles exist (no separate MinterRole, no blacklist/fees).

Recommendations
To further enhance the quality and maintainability of the ETHICS contract, the following recom-
mendations are made:

1. Supply Policy Enforcement (Medium)

Ensure the configured cap (_maxSupply) equals the communicated maximum supply
(100,000,000 · 10^18). Lock this policy in project docs and distribution schedules. Con-
sider emitting an event in initialize summarizing cap, initialSupply, and mintTarget
for off-chain indexers.

2. Ownership Hardening (Low)

• Validate _owner != address(0) inside initialize to avoid accidental renounce at de-
ployment.

• Transfer ownership to a multisig (e.g., Gnosis Safe) and consider a Timelock for
mint/pause operations.

• Publish an owner actions policy (what actions are allowed and when) to reduce centraliza-
tion concerns.

 ETHICS SMART CONTRACT AUDIT 9

page 9/14

3. Initialization Hygiene (Low)
Although functional correctness is unaffected, call parent initializers to stay aligned with
OZ upgradeable conventions and future-proof upgrades:

function initialize(...) external initializer {
__ERC20_init(_name, _symbol, _decimals);
__ERC20Capped_init(_maxSupply);
__Pausable_init();
__Ownable_init(_owner);
_mint(_mintTarget, _initialSupply);
__ERC20TokenMetadata_init(tokenUri_); // or keep _setTokenUri
}

This also enforces the non-zero owner check from __Ownable_init.

4. Operational Runbooks & Monitoring (Low)

• Document procedures for emergency pause and subsequent unpause.
• Publish distribution plan for the 50% sale allocation and any vesting/lockups.
• Add on-chain monitors/alerts for OwnershipTransferred, Paused, Unpaused, and mint

calls.

5. Testing & CI (Informational)

• Provide unit tests (e.g., Foundry/Hardhat) for mint capping, pausing semantics (trans-
fers/mints/burns blocked), ownership transitions, and metadata updates.

• Add static analysis (Slither) and coverage reporting in CI.

Checked Items
The contract was audited for commonly known and specific vulnerabilities. Here is a summary of
the items considered:

Item Type Description Status

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly.

Passed

Integer Overflow and
Underflow

SWC-101 Solidity ^0.8.x includes built-in overflow and un-
derflow protection.

Passed

Outdated Compiler
Version

SWC-102 Uses recent Solidity version ^0.8.30. Passed

Floating Pragma SWC-103 Contracts should deploy with a fixed compiler
version.

Passed

Unchecked Call SWC-104 Ensures the return value of calls is checked. Not Relevant

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104

 ETHICS SMART CONTRACT AUDIT 10

page 10/14

Return Value

Access Control &
Authorization

CWE-284 Properly implemented without unauthorized ac-
cess to protected functions.

Passed

SELFDESTRUCT
Instruction

SWC-106 Contract does not contain self-destruct function-
ality.

Not Relevant

Check-Effect-
Interaction

SWC-107 Follows the pattern to prevent reentrancy at-
tacks..

Passed

Assert Violation SWC-110 Proper code execution prevents reaching a failing
assert statement.

Passed

Deprecated Solidity
Functions

SWC-111 No deprecated functions are used. Passed

Delegatecall to
Untrusted Callee

SWC-112 No delegatecall usage to untrusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128 No risks of DoS attacks through contract design. Passed

Race Conditions SWC-114 No race conditions or transaction order depend-
encies identified.

Informational

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. Passed

Block values as a
proxy for time

SWC-116 Block numbers are not used as time proxies. Passed

Signature Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Not applicable, as the contract does not use mes-
sage signatures..

Not Relevant

Shadowing State
Variable

SWC-119 State variables are not shadowed. Passed

Weak Sources of
Randomness

SWC-120 Randomness is not generated using block attrib-
utes.

Not Relevant

Incorrect Inheritance
Order

SWC-125 Inheritance order is carefully specified. Passed

Calls Only to Trusted
Addresses

EEA-Level-
2 SWC-126

External calls are only performed to trusted ad-
dresses.

Passed

https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126

 ETHICS SMART CONTRACT AUDIT 11

page 11/14

Presence of unused
variables

SWC-131
The code should not contain unused variables if
this is not justified by design. No unused
variables found, ensuring efficient code.

Passed

EIP standards
violation

EIP The contract adheres to EIP standards, particu-
larly ERC-20.

Passed

Assets integrity Custom
Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Passed

User Balances
manipulation

Custom
Contract owners or any other third party should
not be able to access funds belonging to users.

Passed

Data Consistency Custom
Smart contract data should be consistent all over
the data flow.

Passed

Flashloan Attack Custom

When working with exchange rates, they should
be received from a trusted source and not be vul-
nerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
manipulation

Custom
Tokens can be minted only according to rules
specified in a whitepaper or any other documen-
tation provided by the customer.

Warning

Gas Limit and Loops Custom
Code is optimized to avoid high gas usage and
unbounded loops.

Passed

Style guide violation Custom
Style guides and best practices should be fol-
lowed.

Passed

Requirements
Compliance

Custom
The code should be compliant with the require-
ments provided by the Customer.

Passed

Environment
Consistency

Custom

The project should contain a configured develop-
ment environment with a comprehensive descrip-
tion of how to compile, build and deploy the
code.

Not Relevant

Secure Oracles Usage Custom
The code should have the ability to pause specific
data feeds that it relies on. This should be done to
protect a contract from compromised oracles.

Not Relevant

Tests Coverage Custom
The code should be covered with unit tests. Test
coverage should be 100%, with both negative and
positive cases covered. Usage of contracts by

Failed

https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

 ETHICS SMART CONTRACT AUDIT 12

page 12/14

multiple users should be tested.

Stable Imports Custom
The code should not reference draft contracts,
that may be changed in the future.

Passed

 ETHICS SMART CONTRACT AUDIT 13

page 13/14

Findings
Critical
No issues

High
No issues

Medium

M-1 — Supply policy may diverge from communicated total supply if cap misconfigured
Description: The cap is provided at initialization. If _maxSupply is set above the communicated
max supply (100,000,000), the owner can mint additional tokens up to the cap, diverging from pub-
lic expectations.

Recommendation: Set cap == 100,000,000 · 10^18, document it publicly, and consider emit-
ting an event in initialize with cap and initialSupply. Optionally hard-code the cap if policy
is immutable.

Low

L-1 — Missing zero-address validation for _owner in initialize
Description: initialize uses _transferOwnership(_owner) without checking for address(0).
Passing zero would renounce ownership at deployment and disable onlyOwner functions. While not
a vulnerability per se, it is a foot-gun.

Recommendation: Require _owner != address(0) or call __Ownable_init(_owner) which en-
forces this.

L-2 — Parent initializers not called
Description: __Pausable_init and __Ownable_init are not invoked. Defaults are correct today
(paused == false), but adhering to OZ initializer patterns better future-proofs upgrades and ex-
plicit state.

Recommendation: Call parent initializers in initialize (see §9.3 snippet).

L-3 — Centralized administration
Description: The design intentionally centralizes minting and pausing to the owner. While accepta-
ble for many tokens, it concentrates power and creates a single point of failure.

Recommendation: Migrate ownership to a multisig; consider a timelock for sensitive ops; publish
governance policy.

 ETHICS SMART CONTRACT AUDIT 14

page 14/14

Disclaimers
The smart contracts given for audit have been analyzed based on best industry practices at the time
of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security
of the code. The report covers the code submitted and reviewed, so it may not be relevant after any
modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the
code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to
note that you should not rely on this report only — we recommend proceeding with several independ-
ent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of
the translated versions.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The platform, its programming
language, and other software related to the smart contract can have vulnerabilities that can lead to
hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

